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Autonomous navigation is a field that has been under constant research 
throughout recent years as human yearns to develop better path searching 
ability for autonomous navigation. Up until now, there has been much 
advancement on the subject matter, however there are much room for 
improvement that yields better result thus pushing the limits of autonomous 
navigation ability further. In this study, we will attempt to improve the path 
searching efficiency of mobile robot by using numerical technique to solve path 
searching problems iteratively. By utilizing harmonic functions, the Laplace’s 
equation can be used to generate potential function values for mobile robot’s 
configuration space. Thus, this paper proposed the method of Half-Sweep 
Accelerated Overrelaxation 9-Point Laplacian (HSAOR-9P) iteration to improve 
the path searching ability of mobile robot in a configuration space. Through this, 
the experiment shows that a smooth path was able to be produced from any 
starting point to the goal point in the configuration space. Aside from that, the 
results also show that this numerical method was more efficient in solving 
mobile robot path searching problem compared to its predecessors. 
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1. Introduction 
 

Efficiency of path searching in mobile robot navigation plays an influential role, as it enables the 
mobile robot to move from a starting point to a goal point while avoiding any obstacles along its way 
in the shortest time as possible. Solving the path searching problem in the most efficient way as 
possible has been essential throughout the years as it is applied in various fields of easing human 
activities such as in automated surveillance, transportation, animations and even robotics surgery. In 
this paper, the path searching problem is modelled as Laplace’s equation which controls the 
generation of harmonic potential functions (HPF) in the configuration space. Prior to this, various 
methods were available to compute the value of HPF, including Jacobi, Gauss-Seidel (GS) and 
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Successive Overrelaxation (SOR) [1–4]. For this paper, we will implement the iterative method known 
as Half-Sweep Accelerated Overrelaxation via 9-Point Laplacian (HSAOR-9P) to compute the HPF 
values, which in turn will generate temperature values that will be used for the mobile robot path 
generation via Gradient Descent Search (GDS) method. 

The application of HPF in robot path searching was first introduced by Khatib [5], where in his 
work it was shown that through potential function method, every obstacle in the configuration space 
shall exert a repelling force while the goal shall exert attraction force. In other related work, Connolly 
and Gruppen [6] in their early work has shown that HPF have useful properties when applied in 
robotic applications. Koditschek [7] has concluded that, geometrically in a certain domain, potential 
functions were able to guide the effector from nearly any point to any given point in the said domain. 
The methods mentioned above, however, were all suffering from the problem arise from the 
generation of local minima, which traps the robot in the unwanted configuration space other than 
the desired ones, hence preventing the robot from reaching its intended goal point. The works by 
Connolly et al., [1] and Akishita et al., [2] both demonstrated independent global method that 
generates smooth path using solutions obtained from Laplace’s equation where the potential fields 
were computed over global manner across the entire region in the configuration space. By 
introducing Laplace’s equation solution in the configuration space, the local minima were able to be 
avoided, and are guaranteed to provide trajectory path towards the goal point all of the time by 
following the path generated through GDS. Another notable work was by Sasaki [4] where numerical 
techniques were demonstrated to be able to solve path searching problem, resulting in efficient path 
searching in complex maze simulation. Some other more useful applications of HPF includes work by 
Waydo and Murray [8] which used steam function that is similar to HPF to generate motion planning 
for vehicles, Daily and Bevly [9] used HPF for path searching for high speed vehicles, Szulczynski et 
al., [10] used HPF to generate real time obstacle avoidance path searching, Yang and Ariyur [11] 
utilized Laplacian method of path searching in avoiding moving obstacles and Liang et al., [12] which 
applied 3D potential path searching method or unmanned aerial vehicle (UAV) motion in complex 
environments. 

 
2. Methodology  

 
In order to perform this experiment, we have applied the Laplacian potential numerical technique 

into the process. The Laplace’s equation in this experiment is also known as steady state equation 
[13]. The solutions to the Laplace’s equation reflect the temperature value in the configuration space, 
which in turn be used to generate path for mobile robot through the GDS technique. To solve the 
Laplace’s equation, we implemented numerical technique, HPF, which offers many advantages for 
mobile robot path searching, other than having many useful properties for applications relating to 
robotics field [6], it also offers a complete path searching algorithm. The paths generated through 
HPF are generally smooth [6]. Moreover, through implementation of HPF into the solution, we can 
avoid any occurrence of spurious local minima [1], which is something that traps the mobile robot 
preventing the mobile robot from reaching its intended goal point. 

For the designated scene, which is the configuration space the autonomous robot operates in, 
we used 4 different layouts to perform the experiments, each with different number of obstacles 
[14]. In the designated areas, there consists of the starting point, interior and exterior boundary walls, 
obstacles, and the goal point. The starting and goal points vary from each scene as they were not 
fixed, in fact the starting point and goal point could be anywhere within the configuration space so 
long as they are within the inner boundary walls, and do not intercept with obstacles. Since mobile 
robot path searching problem can be treated as heat transfer problem, the inner and outer boundary 
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walls, and obstacles were fixed with constant temperature, and were treated as heat source, whereas 
the goal point was assigned with the lowest potential value and acted as a heat sink. Following the 
principal of heat conduction, where heat flows from the area with higher temperature into the area 
with lower temperature, the goal point acted as a heat sink pulling heat into it. This occurrence of 
flowing heat represented by the Laplacian potential creates a heat flux line which in turn was to be 
used by the mobile robot to navigate its way towards the goal point. Through implementing HPF into 
the solution, the mobile robot was able to be guided towards the goal point while avoiding obstacles 
along its way, and as shown by Connolly et al., [1], any occurrence of local minima which traps the 
robot were able to be avoided. 

To better understand the concept mathematically, consider the Laplace’s equation in Eq. (1): 
 

                (1) 
 

Where is the i-th Cartesian coordinate and is the dimension. 
 
A harmonic function in the domain is a function that satisfies Laplace’s equation in Eq. (1). Under 

the circumstances of mobile robot path searching, the domain comprises of the outer and inner 
boundary walls, obstacles, starting point and the goal point. Applying HPF into the solution means 
that the occurrence of local minima can be avoided, since HPF satisfies the min-max principle [15]. 
The HPF restricts the number of functions produced in the configuration space, in doing so avoids 
local minima, thus resulting in a smooth and effective path being generated from the starting point 
to goal point due to the complete path searching algorithm it provided. 

There were various ways in solving the Laplace’s equation as presented in past related works, the 
solutions include conventional numerical technique of GS, Jacobi, SOR and other methods [16-18]. 
This paper will implement the HSAOR-9P, also known as Rotated Accelerated Overrelaxation 9-Point 
Laplacian iteration method, due to the ‘rotated’ style of scanning of the nodal sets in the 
configuration space instead of the standard linear approach. Other iteration methods from previous 
related work [19] will also be used, where the results will be presented for the aim of comparison. 
The iteration methods include, Full-Sweep SOR 5-Point Laplacian (FSSOR-5P), Full-Sweep SOR 9-Point 
Laplacian (FSSOR-9P), Half-Sweep SOR 5-Point Laplacian (HSSOR-5P), Half-Sweep SOR 9-Point 
Laplacian (HSSOR-9P), Full-Sweep AOR 5-Point Laplacian (FSAOR-5P), Full-Sweep AOR 9-Point 
Laplacian (FSAOR-9P), and Half-Sweep AOR 5-Point Laplacian (HSSOR-5P). 
 
2.1 The Half-Sweep Accelerated Overrelaxation 9-Point Laplacian Iterative Method 

 
The half-sweep (HS) iteration method was first presented and used by Abdullah [20] when 

performing calculation through Explicit Decoupled Group (EDG) to solve the 2D Poisson equation. 
Before getting into understanding the HS iterative method, first we take a look into the configuration 
space, where spaces contained within it were divided evenly throughout the designated scene into 
small nodal points, which increases in number as the configuration space increases in size. These 
nodal points, under normal circumstances were all being considered into the calculation when solving 
the HPF, as shown in Figure 1 (a). This standard method of calculation technique is also called as full-
sweep (FS) iteration method. In the HS iteration method, of all the nodal points present in the 
configuration space, only half of them were considered into the calculation process. To better 
understand this concept, consider the nodal points samples as shown in Figure 1. 
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Fig. 1. Nodal points consideration pattern in configuration space 

 
The FS method, while being thorough, consumes the maximum time required for this sort of 

process to complete its computation. The HS method enhances the standard technique by skipping 
the nodal points taken into iterative consideration. Whenever one set of the nodal points had been 
through the iterative computational process, the next set of points taken into consideration are the 
ones after skipping the nodal points neighboring the previous set of considered nodal points, creating 
a ‘rotating’ style of computation, thus the name ‘rotated’ iterative method. The nodal points taken 
into consideration are represented by the black dots, in Figure 1(b), while the remaining white dots, 

 are computed via direct method. This type of iteration saves much of the time needed to compute 
the solutions desired. 

Figure 2 shows the said sets of nodal points isolated from the configuration space for better 
visualization, while Figure 3 shows the computational grid for the nodal sets mentioned, in the 
configuration space. The visualizations in Figure 2 and Figure 3 demonstrates nodal sets that were 
considered in a standard approach of numerical technique in obtaining solutions for Laplacian 
potential where 5 nodal points were considered into the computation. In this paper, we adapted the 
9-point Laplacian approach. Whereas the name would suggest, 9 nodal points were considered into 
the computation of Laplacian potential solutions, and paired with the HS approach, results in a more 
accurate data in a shorter time frame. 

 

 
Fig. 2. The standard nodal points set (5-point) computational model for finite 
difference approximation 

•

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Fig. 3. Standard nodal points (5-point) set computational grid about point 
(i, j) 

 
In understanding the 9-point concept visually, consider the illustration shown in Figure 4 and 

Figure 5. Instead of taking 5 nodal points, 9 nodal points were considered into computation, where 
in Figure 4 (a) and Figure 5 (a) are the nodal points set model for full-sweep approach, while in Figure 
4 (b) and Figure 5 (b) are for the HS approach where it is essentially augmented from the similar 9-
point stencil but rotated about the i-j plane by 45 .ͦ 

 

 
Fig. 4. The standard nodal points set (9-point) computational model for 
finite difference approximation 

 

 
Fig. 5. Standard nodal points (9-point) set computational grid about 
point 
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Considering the 2-dimensional Laplace’s equation in Eq. (1) be defined as: 
 

𝛻!𝑈 = "!#
"$!

+ "!#
"%!

= 0              (2) 

By applying the second-order central difference scheme into the HS 9-point standard finite 
difference approximation equation, Eq. (2) can then be simplified as: 

 

     
   (3) 

 
For standard numerical, SOR technique, one weighted parameter, ω [21-23] would be 

implemented into computation, the formulation of HSSOR-9P can now be viewed as: 
 

       (4) 

 
This paper tests one of the overrelaxation family numerical technique, called Accelerated 
Overrelaxation (AOR). By adding another weighted parameter, r, Eq. (4) can be enhanced to obtain 
HSAOR-9P iteration formulation. Discretizing Eq. (4) by replacing , ,  and  with 

, ,  and  respectively, and adding the terms , 

, , and , we get the formulation of HSAOR-9P as 

follows: 
 

       (5) 
 
Applying Eq. (5) into the computation gives us linear systems, which will be iterated individually 

until the maximum error of the solutions generated falls in the specified tolerance error range, i.e., 
at either 8.8818 E-16 or 9.9920 E-16. The tolerance error range should be set to a minimum for 
avoiding excessive occurrence of flat regions in the final solutions. In studies made by Hajidimos [24], 
it was stated that the values of the weighted parameter r are customarily set to be as close to the 
value of ω for its correlative SOR, and the value of ω is determined after testing the values 
sequentially until an optimum performance was achieved in the simulation. For this paper, the values 
of ω were tested and found out to be between 1.8 and 2.0. After the iteration of the linear systems 
were completed, upon conducting the GDS on the iteration solutions, a path will have been 
generated from the starting point towards the goal point. 

 
The algorithm of HSAOR-9P in the simulation is shown below: 
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Algorithm of path searching via HSAOR-9P iteration: 
 

i. Set up the configuration space with an arbitrary position for the starting point and 
objective point each in the free space. 

ii. Activate the starting point , ,  
iii. In all free spaces, i.e., non-occupied grids, for all accounted nodal points   in HS scheme, 

compute 

 
iv. For the remaining nodes in the free space, plotted as , calculate via direct method 

using  

 
v. Examine the error values from convergence test for . If yes, proceed to (vi), else, 

revert to (iii).  
vi. Apply GDS for the steepest descent search in potential values and generate path from the 

starting point to the objective point. 
 
3. Experiments and Results  

 
The experiment was performed on 4 different set of designated scenes, of 3 different pixel sizes, 

i.e. 300×300, 600×600 and 900×900, with increasing obstacles as we go forward into the 
environments. Each region contains boundary walls, various forms of obstacles, along with starting 
point and goal point. In the environment, the initial temperature of the exterior and interior 
boundary walls was set to the highest temperature values, meanwhile the goal point possesses the 
lowest temperature value. After iteration and obtaining the function values, GDS can be performed 
to generate a path. The software used for solving and obtaining the linear systems was the Delphi 
Project where in the software a pre-built platform namely Robot 2D Simulator [25] was utilized, and 
the computation was carried out on a computer with Intel Core i5-5200U CPU at 2.2 GHz utilizing 4 
GB of RAM. The results produced were as shown in Table 1 and Table 2. As observed on Table 1 and 
Table 2, the iterations done through HSAOR-9P clearly have the most efficient rate of iterations. 
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Table 1 
Execution results of the examined numerical 
technique in terms of number of iterations 

 Methods N x N 
  300 x 300 600 x 600 900 x 900 

En
vi

ro
nm

en
t 1

 
FSSOR-5P 1312 4185 7398 
FSAOR-5P 1151 3105 5417 
HSSOR-5P 1095 3050 4747 
HSAOR-5P 916 2562 3741 
FSSOR-9P 1231 3612 6541 
FSAOR-9P 1113 2805 4771 
HSSOR-9P 918 2581 4094 
HSAOR-9P 783 2191 3211 

En
vi

ro
nm

en
t 2

 

FSSOR-5P 2231 4868 10916 
FSAOR-5P 1726 3467 8110 
HSSOR-5P 1241 3065 6968 
HSAOR-5P 914 2329 5513 
FSSOR-9P 1878 4272 9667 
FSAOR-9P 1549 3055 7159 
HSSOR-9P 1040 2624 6034 
HSAOR-9P 848 1995 4778 

En
vi

ro
nm

en
t 3

 

FSSOR-5P 1544 5541 9034 
FSAOR-5P 1093 4081 7560 
HSSOR-5P 948 2362 7046 
HSAOR-5P 757 1964 5398 
FSSOR-9P 1284 4662 7722 
FSAOR-9P 908 3448 6457 
HSSOR-9P 834 1989 5909 
HSAOR-9P 661 1651 4568 

En
vi

ro
nm

en
t 4

 

FSSOR-5P 766 2662 4962 
FSAOR-5P 748 2129 3884 
HSSOR-5P 567 1575 4160 
HSAOR-5P 524 1059 3057 
FSSOR-9P 756 2253 4264 
FSAOR-9P 736 1798 3322 
HSSOR-9P 550 1275 3512 
HSAOR-9P 482 928 2574 
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Table 2 
Execution results of the examined methods in terms of 
CPU processing time (in seconds) 
 Methods N x N 
 300 x 300 600 x 600 900 x 900 

En
vi

ro
nm

en
t 1

 
FSSOR-5P 1.86 35.00 168.77 
FSAOR-5P 1.86 29.05 137.24 
HSSOR-5P 0.95 18.16 72.53 
HSAOR-5P 0.88 15.20 60.66 
FSSOR-9P 1.99 32.99 168.01 
FSAOR-9P 2.28 31.47 146.46 
HSSOR-9P 0.88 16.39 67.72 
HSAOR-9P 0.91 15.53 62.64 

En
vi

ro
nm

en
t 2

 

FSSOR-5P 3.23 42.14 247.08 
FSAOR-5P 2.88 33.56 208.82 
HSSOR-5P 1.09 18.39 110.16 
HSAOR-5P 0.74 13.85 91.88 
FSSOR-9P 3.13 41.08 249.36 
FSAOR-9P 3.23 34.44 222.62 
HSSOR-9P 1.09 17.24 102.72 
HSAOR-9P 1.02 14.38 94.00 

En
vi

ro
nm

en
t 3

 

FSSOR-5P 2.11 47.33 197.27 
FSAOR-5P 1.70 36.49 185.62 
HSSOR-5P 0.77 13.50 104.06 
HSAOR-5P 0.69 11.55 82.93 
FSSOR-9P 1.98 41.28 190.95 
FSAOR-9P 1.76 36.08 188.60 
HSSOR-9P 0.78 12.30 92.22 
HSAOR-9P 0.73 11.27 82.57 

En
vi

ro
nm

en
t 4

 

FSSOR-5P 1.05 21.19 103.46 
FSAOR-5P 1.17 18.77 91.91 
HSSOR-5P 0.47 8.53 59.55 
HSAOR-5P 0.53 5.94 46.35 
FSSOR-9P 1.17 19.75 100.79 
FSAOR-9P 1.44 18.74 94.55 
HSSOR-9P 0.52 7.81 54.69 
HSAOR-9P 0.56 6.20 46.42 

 
Figure 6 shows the path line samples that were generated from the simulation, where the red 

dot portrays the starting point, while the green rectangle depicts the goal point. As observed from 
Figure 6, a smooth and short path line that will be used by the mobile robot were produced for every 
different starting and goal points in the environment. The performance of the iteration methods in 
terms of CPU processing time was inconsistent in a smaller environment, i.e. in 300×300 where the 
CPU processing time results were less than 5 seconds, but it became more consistent in larger 
environments. This is due to the CPU performance itself where background processes would affect 
small time frame of simulation processing, yet as observed in the results, obviously the HSAOR-9P 
will and still gave slightly faster execution time compared to other proposed methods. 
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Fig. 6. Path lines generated through HSAOR-9P 

 
4. Conclusions and Future Work 

 
Through the results we obtained from this experiment, we were able to show that solving the 

Laplace’s equation can be done efficiently with the correct method, and the more efficient the 
numerical technique applied, the better the mobile robot’s path searching will be. In this case, the 
numerical technique HSAOR-9P was able to perform better than its predecessor’s standard 
techniques of SOR and AOR. The number of obstacles affects the path navigation in a good and 
desired way as the more the obstacles present in the environment, the better the mobile robot path 
navigation is, this is due to the fact that more computational areas can be ignored if it were occupied. 
In future works, we can try improving the numerical method by introducing Quarter-Sweep (QS) 
technique in attempt to improve computational efficiency [26-28]. 

 
Acknowledgement 
This research was not funded by any grant. The authors declare that there is no conflict of interest 
regarding the publication of this study.  
 



Citra Journal of Computer Science and Technology 
Volume 2, Issue 1 (2025) 44-55 

 

54 
 

References 
[1] Connolly, Christopher I., J. Brian Burns, and Rich Weiss. "Path planning using Laplace's equation." In Proceedings., 

IEEE International Conference on Robotics and Automation, pp. 2102-2106. IEEE, 1990. 
https://doi.org/10.1109/ROBOT.1990.126315 

[2] Akishita, S., S. Kawamura, and K-I. Hayashi. "Laplace potential for moving obstacle avoidance and approach of a 
mobile robot." In Japan-USA Symposium on flexible automation, A Pacific rim conference, pp. 139-142. 1990. 
https://doi.org/10.1109/21.148426 

[3] Barraquand, Jerome, Bruno Langlois, and J-C. Latombe. "Numerical potential field techniques for robot path 
planning." IEEE transactions on systems, man, and cybernetics 22, no. 2 (2002): 224-241. 

[4] Sasaki, S. "A practical computational technique for mobile robot navigation." In Proceedings of the 1998 IEEE 
International Conference on Control Applications (Cat. No. 98CH36104), vol. 2, pp. 1323-1327. IEEE, 1998. 
https://doi.org/10.1109/CCA.1998.721675 

[5] Khatib, Oussama. "Real-time obstacle avoidance for manipulators and mobile robots." In Proceedings. 1985 IEEE 
international conference on robotics and automation, vol. 2, pp. 500-505. IEEE, 1985. 
https://doi.org/10.1109/ROBOT.1985.1087247 

[6] Connolly, Christopher I., and Roderic A. Grupen. "The applications of harmonic functions to robotics." Journal of 
robotic Systems 10, no. 7 (1993): 931-946. https://doi.org/10.1002/rob.4620100704  

[7] Koditschek, Daniel. "Exact robot navigation by means of potential functions: Some topological considerations." 
In Proceedings. 1987 IEEE international conference on robotics and automation, vol. 4, pp. 1-6. IEEE, 1987. 
https://doi.org/10.1109/ROBOT.1987.1088038 

[8] Waydo, Stephen, and Richard M. Murray. "Vehicle motion planning using stream functions." In 2003 IEEE 
International Conference on Robotics and Automation (Cat. No. 03CH37422), vol. 2, pp. 2484-2491. IEEE, 2003. 
https://doi.org/10.1109/ROBOT.2003.1241966 

[9] Daily, Robert, and David M. Bevly. "Harmonic potential field path planning for high speed vehicles." In 2008 
American Control Conference, pp. 4609-4614. IEEE, 2008. https://doi.org/10.1109/ACC.2008.4587222 

[10] Szulczyński, Paweł, Dariusz Pazderski, and Krzysztof Kozłowski. "Real-time obstacle avoidance using harmonic 
potential functions." Journal of Automation Mobile Robotics and Intelligent Systems 5, no. 3 (2011): 59-66. 

[11] Yang, Fei, and Kartik Ariyur. "Laplacian Path Planning: Implementation And Generalizations." In Infotech@ 
Aerospace 2011, p. 1631. 2011. https://doi.org/10.2514/6.2011-1631 

[12] Liang, Xiao, Honglun Wang, Dawei Li, and Chang Liu. "Three-dimensional path planning for unmanned aerial 
vehicles based on fluid flow." In 2014 IEEE Aerospace Conference, pp. 1-13. IEEE, 2014. 
https://doi.org/10.1109/AERO.2014.6836520 

[13] Evans, Lawrence C. Partial differential equations. Vol. 19. American mathematical society, 2022. 
[14] Zelinsky, Alexander. "Mobile robot map making using sonar." Journal of Robotic Systems 8, no. 5 (1991): 557-577. 

https://doi.org/10.1002/rob.4620080502 
[15] Zachmanoglou, Eleftherios C., and Dale W. Thoe. Introduction to partial differential equations with applications. 

Courier Corporation, 1986. 
[16] Evans, D. J. "Group explicit iterative methods for solving large linear systems." International Journal of Computer 

Mathematics 17, no. 1 (1985): 81-108. https://doi.org/10.1080/00207168508803452 
[17] Evans, D. J., and W. S. Yousif. "Explicit Group Iterative Methods for solving elliptic partial differential equations in 

3-space dimensions." International journal of computer mathematics 18, no. 3-4 (1986): 323-340. 
https://doi.org/10.1080/00207168608803498 

[18] Ibrahim, Arsmah. "The Study of the Iterative Solution Of Boundary Value Problem by the Finite Difference 
Methods." PhD diss., PhD Thesis. Universiti Kebangsaan Malaysia, 1993. 

[19] Dahalan, A. A., A. Saudi, J. Sulaiman, and W. R. W. Din. "Autonomous navigation in static indoor environment via 
rotated Laplacian operator." In AIP conference proceedings, vol. 1974, no. 1, p. 020035. AIP Publishing LLC, 2018. 
https://doi.org/10.1063/1.5041566 

[20] Abdullah, Abdul Rahman. "The four point Explicit Decoupled Group (EDG) method: A fast Poisson 
solver." International Journal of Computer Mathematics 38, no. 1-2 (1991): 61-70. 
https://doi.org/10.1080/00207169108803958 

[21] Young, David M. Iterative solution of large linear systems. Elsevier, 2014. 
[22] Young, David M. "Second-degree iterative methods for the solution of large linear systems." Journal of 

Approximation Theory 5, no. 2 (1972): 137-148. https://doi.org/10.1016/0021-9045(72)90036-6 
[23] Young, David M. Iterative solution of linear systems arising from finite element techniques. Center for Numerical 

Analysis, University of Texas at Austin, 1975. 

https://doi.org/10.1109/ROBOT.1990.126315
https://doi.org/10.1109/21.148426
https://doi.org/10.1109/CCA.1998.721675
https://doi.org/10.1109/ROBOT.1985.1087247
https://doi.org/10.1002/rob.4620100704
https://doi.org/10.1109/ROBOT.1987.1088038
https://doi.org/10.1109/ROBOT.2003.1241966
https://doi.org/10.1109/ACC.2008.4587222
https://doi.org/10.2514/6.2011-1631
https://doi.org/10.1109/AERO.2014.6836520
https://doi.org/10.1002/rob.4620080502
https://doi.org/10.1080/00207168508803452
https://doi.org/10.1080/00207168608803498
https://doi.org/10.1063/1.5041566
https://doi.org/10.1080/00207169108803958
https://doi.org/10.1016/0021-9045(72)90036-6


Citra Journal of Computer Science and Technology 
Volume 2, Issue 1 (2025) 44-55 

 

55 
 

[24] Hadjidimos, Apostolos. "Accelerated overrelaxation method." Mathematics of computation 32, no. 141 (1978): 
149-157. https://doi.org/10.1090/S0025-5718-1978-0483340-6 

[25] Saudi, Azali Bin. "Robot path planning using family of SOR iterative methods with laplacian behaviour-based 
control." PhD diss., Universiti Malaysia Sabah, 2015. 

[26] Othman, Mohamed, and Abdul Rahman Abdullah. "An efficient four points modified explicit group poisson 
solver." International Journal of Computer Mathematics 76, no. 2 (2000): 203-217. 
https://doi.org/10.1080/00207160008805020 

[27] Ali, L. H., J. Sulaiman, and A. Saudi. "Iterative method for solving nonlinear Fredholm integral equations using 
Quarter-Sweep Newton-PKSOR method." In International Conference on Computational Science and Technology, 
pp. 33-46. Singapore: Springer Nature Singapore, 2022. https://doi.org/10.1007/978-981-19-8406-8_3  

[28] Dahalan, A. A., A. Saudi, and J. Sulaiman. "Development of Path Optimization Using Quarter-Sweep Modified 
Successive Over-Relaxation Iterative Technique." In Proceedings of Eighth International Conference on Information 
System Design and Intelligent Applications, pp. 411-425. Singapore: Springer Nature Singapore, 2024. 
https://doi.org/10.1007/978-981-97-4892-1_35 

 
 
 
 
 
 
 

https://doi.org/10.1090/S0025-5718-1978-0483340-6
https://doi.org/10.1080/00207160008805020
https://doi.org/10.1007/978-981-19-8406-8_3
https://doi.org/10.1007/978-981-97-4892-1_35

