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Pneumonia remains the leading infectious cause of death globally, 
particularly in low-resource settings where delayed diagnosis and limited 
radiologist availability exacerbate mortality. Existing AI-based radiograph 
interpretation systems often demand high computational resources and 
lack robustness across imaging projections. This study presents a proof-of-
concept convolutional neural network diagnostic tool optimised for 
projection-invariant pneumonia detection under constrained conditions. 
Using a DenseNet-121 backbone trained on 2,000 curated images from the 
MIMIC-CXR dataset, our model achieved an AUC of 0.7310 and F1-score of 
0.6207, with 66.36% validation accuracy. The model’s performance was 
consistent across posteroanterior and anteroposterior projections, though 
lateral view evaluation is pending. Preprocessing included CLAHE and 
DICOM standardisation, while augmentation improved generalisation. 
Though early-stage, this work shows the potential of lightweight, projection-
tolerant CNNs in offline diagnosis pipelines. Future work will validate 
deployment feasibility on edge devices and expand evaluation across 
diverse patient demographics. 
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1. Introduction 
1.1 Background and Importance  
 

Pneumonia remains one of the leading causes of morbidity and mortality worldwide, responsible 
for over 2.5 million deaths annually [1]. Pneumonia is an acute infection of the lower respiratory tract 
characterised by inflammation and consolidation of the lung parenchyma, primarily caused by 
various microorganisms such as bacteria, viruses, and fungi [2]. Studies indicate that a substantial 
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percentage of pneumonia survivors exhibit reduced lung function, with 41% showing pulmonary 
sequelae at three months post-discharge, decreasing to 27.9% at ten months [3]. This highlights the 
importance of having a fast detection method to avoid the long-term effects of pneumonia.  

Diagnostic methods such as chest radiography and microbiological cultures are essential for 
confirmation and guidance of appropriate therapy. The burden is especially severe in low- and 
middle-income countries (LMICs), where structural healthcare limitations, such as the scarcity of 
trained radiologists and delayed access to diagnostic imaging, significantly compromise clinical 
outcomes. In such settings, timely diagnosis is often unavailable, resulting in preventable disease 
progression and death, particularly among vulnerable populations, including children under five, the 
elderly, and individuals with comorbidities [4]. 

Despite the advancements of technology, machine learning is not implemented effectively to the 
healthcare settings, particularly by radiologists because they often exhibit skepticism towards AI 
innovations, stemming from a lack of trust in technology’s reliability and accuracy. Also, concerns 
about AI replacing human expertise contribute to resistance, as many radiologists fear a loss of 
professional autonomy [5]. 

Therefore, this research aims to address this root problem by proving and documenting the 
framework and the development of machine learning, especially in pneumonia detection through 
the use of a convolutional neural network of chest x-rays.  
 
1.2 Gaps in the Study 
 

Despite significant advancements in artificial intelligence for medical imaging, several critical gaps 
limit the practical deployment of pneumonia detection systems in resource-constrained 
environments. These limitations create barriers that prevent the translation of promising research 
into real-world clinical impact. 

Current deep learning models, particularly convolutional neural networks, require substantial 
computational resources that pose significant deployment barriers on edge devices and in low-
resource settings. The complexity of state-of-the-art models like CheXNet, which employs a 121-layer 
CNN architecture, typically contains approximately 7 million parameters, translating to a model size 
of 30.5 MB to 34 MB. Such models necessitate powerful hardware infrastructure that may not be 
feasible in many clinical environments [6]. While lightweight alternatives such as MobileNetV3 and 
ShuffleNetV2 have been proposed to address these limitations by offering improved balance 
between accuracy and resource efficiency [7], there remains a critical gap in systematically 
documented development frameworks that prioritise extreme resource efficiency and deployment 
feasibility, specifically targeting a significantly smaller model footprint for truly constrained 
conditions. 

The development of robust pneumonia detection models faces significant challenges related to 
dataset limitations and generalisation capabilities. The scarcity of annotated datasets and inherent 
class imbalance issues create substantial obstacles in training reliable models for clinical deployment. 
Cross-institutional generalisation remains problematic due to data heterogeneity, varying imaging 
protocols, and privacy concerns that limit data sharing across institutions [8]. While techniques such 
as data augmentation, transfer learning, federated learning, and multimodal datasets have been 
proposed as potential solutions, systematic evaluation of these approaches on small-scale datasets 
representative of resource-limited settings remains insufficient. 

Perhaps most critically, the integration of AI-powered pneumonia detection systems into clinical 
workflows faces substantial barriers related to interpretability, trust, and practical implementation. 
Despite achieving high accuracy metrics, models like CheXNet encounter resistance from radiologists 
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due to concerns about interpretability and reliability in clinical decision-making [7-8]. The absence of 
transparent, well-documented development frameworks that demonstrate rigorous validation 
procedures creates additional barriers to radiologist acceptance and clinical adoption. 
 
1.3 Significance of the Research 
 

This research addresses the critical need for practical, deployable AI solutions in pneumonia 
detection by presenting a comprehensive proof-of-concept investigation that prioritises 
transparency, reproducibility, and deployment feasibility. Rather than pursuing incremental 
improvements in accuracy metrics alone, this study establishes a foundational framework that 
demonstrates how systematic development approaches can build confidence among healthcare 
professionals while addressing real-world deployment constraints. 

The significance of this work lies in its potential to bridge the gap between research-level AI 
achievements and practical clinical implementation in resource-limited settings. By documenting a 
rigorous, transparent development pathway that culminates in an exceptionally compact model of 
26.85 MB, with an average inference time of 16.117 ms per image, this study provides a replicable 
framework that can increase radiologist confidence in machine learning applications through 
demonstrated adherence to strict validation procedures and tangible deployment advantages. This 
proof-of-concept approach acknowledges current performance limitations while establishing a 
foundation for iterative improvement and systematic optimisation, particularly for scenarios where 
minimal model footprint and rapid inference are paramount. 

Furthermore, this research contributes to the growing body of evidence supporting the viability 
of edge-deployable AI solutions for medical imaging in low-resource environments. The insights 
generated from this investigation provide valuable guidance for future development efforts aimed at 
creating clinically acceptable, resource-efficient pneumonia detection systems that can be 
realistically deployed where they are needed most. 
 
1.4 Objectives of the Research  
 

This study aims to establish and document a comprehensive development pathway for 
lightweight convolutional neural network-based pneumonia detection systems, with the following 
specific objectives: 

 
i. To develop and validate a systematic framework for creating resource-efficient pneumonia 

detection models that prioritise deployment feasibility and clinical transparency, thereby 
contributing to increased confidence in machine learning applications among healthcare 
professionals. 

ii. To establish and thoroughly document a reproducible seven-step development methodology 
including data curation, preprocessing, architecture selection, training optimisation, and 
evaluation protocols that can serve as a reference for future pneumonia detection research. 

iii. To provide comprehensive performance benchmarks and identify specific areas for 
improvement that can guide future research efforts toward achieving clinical deployment 
standards while maintaining computational efficiency. 

 
Through these objectives, this research seeks to contribute a transparent, well-documented 

foundation that can enhance trust in AI-powered medical imaging solutions while advancing the 



Citra Journal of Computer Science and Technology 
Volume 2, Issue 1 (2025) 1-15 

 

4 
 

practical deployment of pneumonia detection systems in environments where they can have the 
most significant clinical impact. 
 
2. Methodology  
2.1 Development Framework Overview 
 

The development of the pneumonia detection model adhered to a novel seven-step systematic 
framework designed to ensure robustness, reproducibility, and practical deployability in resource-
constrained clinical settings. This framework is illustrated in Figure 1. 
 

 
Fig. 1. Structured seven-step framework followed in the development process 

 
2.2 Data Foundation 
 

This study utilises a carefully curated subset of the Medical Information Mart for Intensive Care 
Chest X-ray (MIMIC-CXR) database, a large-scale, publicly available dataset of chest radiographs 
paired with free-text radiology reports. The MIMIC-CXR dataset represents one of the most 
comprehensive and well-validated medical imaging resources available for pneumonia detection 
research, providing high-quality, de-identified chest X-ray images with expert radiologist annotations 
[9]. 
 
2.2.1 Dataset selection and curation 
 

From the extensive MIMIC-CXR repository, we systematically selected 2,000 chest X-ray images 
to create a balanced binary classification dataset. The selection process employed the following 
inclusion criteria:  
 

i. images with clear pneumonia or normal diagnostic labels confirmed by radiologist reports,  
ii. adequate image quality suitable for deep learning analysis,  

iii. posteroanterior (PA) and anteroposterior (AP) projection views to ensure projection diversity, 
and (4) complete metadata availability for proper dataset characterisation. 
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2.2.2 Data characteristics and demographics  
 

All selected images maintain original DICOM format metadata, preserving essential clinical 
information including patient demographics, imaging parameters, and acquisition details. The 
dataset included diverse patient demographics representative of the broader MIMIC-CXR population, 
including various age groups, gender distributions, and comorbidity profiles. This diversity enhances 
the generalizability of our findings while maintaining clinical relevance for real-world deployment 
scenarios [10]. 
 
2.3 Image Preprocessing 
 

Standardised preprocessing procedures were implemented to ensure consistent input 
characteristics and optimal feature extraction capabilities. The preprocessing pipeline addresses the 
inherent variability in medical imaging data while maintaining computational efficiency essential for 
resource-constrained deployment environments. 
 
2.3.1 Image standardisation 
 

All chest X-ray images underwent uniform resizing to 224×224-pixel resolution, matching the 
input requirements of standard CNN architectures while maintaining aspect ratio integrity. This 
standardisation process employed bicubic interpolation to preserve image quality during resizing 
operations. The 224×224 resolution represents an optimal balance between computational efficiency 
and feature preservation, enabling deployment on resource-limited hardware while retaining 
sufficient detail for accurate pneumonia detection. 
 
2.3.2 Contrast Limited Adaptive Histogram Equalisation (CLAHE) 
 

To enhance diagnostic feature visibility and address varying contrast conditions across different 
imaging equipment, we applied Contrast Limited Adaptive Histogram Equalisation (CLAHE) to all 
chest X-ray images. CLAHE parameters were carefully optimised through empirical testing, utilising a 
clip limit of 2.0 and tile grid size of 8×8 to achieve optimal contrast enhancement without introducing 
artefacts that could compromise diagnostic accuracy. 

The CLAHE preprocessing step significantly improves the visibility of subtle pneumonic infiltrates 
and consolidations that may be difficult to detect in standard radiographs. This enhancement is 
particularly crucial in resource-limited settings where imaging equipment may produce suboptimal 
contrast characteristics. Visual comparison of pre- and post-CLAHE processed images demonstrates 
marked improvement in diagnostic feature clarity while maintaining natural image appearance. 
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Fig. 2. The visibility of subtle pneumonic improves after CLAHE 

 
2.3.3 Data normalisation 
 

Following contrast enhancement, all pixel values were normalised to the range [0,1] using min-
max normalization to ensure consistent input characteristics across the dataset. This normalisation 
step eliminates potential bias introduced by varying pixel intensity distributions and facilitates stable 
training convergence. The normalisation process maintains the relative intensity relationships within 
images while standardising the overall intensity scale for optimal neural network processing [11]. 
 
2.4 Dataset Partitioning 
 

Strategic dataset partitioning is essential for unbiased model evaluation and reliable performance 
assessment. Our partitioning strategy follows established machine learning best practices while 
addressing the specific requirements of medical imaging validation. 
 
2.4.1 Partitioning strategy 
 

The 2,000-image dataset was strategically divided into three distinct subsets: training set (1,600 
images, 80%), validation set (260 images, 13%), and testing set (140 images, 7%). This distribution 
ensures adequate training data for model learning while reserving sufficient samples for validation 
and independent testing. The relatively smaller test set reflects the common challenge of limited data 
availability in medical imaging studies while maintaining statistical validity for performance 
assessment. 
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Fig. 3. A balanced binary classification dataset 

 
2.4.2 Data leakage prevention 
 

Strict measures were implemented to prevent data leakage between partitions, ensuring that no 
patient data appears across multiple subsets. Patient-level separation was maintained throughout 
the partitioning process, preventing any potential bias that could artificially inflate performance 
metrics. The test set contains exclusively unseen data that remains completely isolated from the 
training and validation processes until final model evaluation. 
 
2.4.3 Balanced distribution 
 

Class balance is maintained across all partitions, with each subset containing equal proportions 
of pneumonia-positive and normal cases. This balanced distribution ensures that model training and 
evaluation occur under consistent class representation, preventing bias toward either diagnostic 
category. The validation set enables reliable hyperparameter tuning and model selection without 
compromising the integrity of the independent test evaluation. 
 
2.5 Data Augmentation 
 

Data augmentation techniques were strategically implemented to address dataset size limitations 
and enhance model generalisation capabilities. The augmentation strategy balances the need for 
dataset expansion with the preservation of clinical relevance and diagnostic accuracy. 
 
2.5.1 Augmentation techniques 
 

Three primary augmentation techniques were selected based on their clinical appropriateness 
and effectiveness in medical imaging applications:  
 

i. zoom transformations with random zoom factors ranging from 0.9 to 1.1,  
ii. rotation adjustments within ±15 degrees, and  

iii. horizontal flipping transformations.  
 

These augmentations were chosen to simulate natural variations in patient positioning and 
imaging conditions commonly encountered in clinical practice [12-13]. 
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2.5.2 Clinical relevance considerations 
 

All augmentation parameters were carefully selected to maintain clinical relevance while 
expanding dataset diversity. Rotation angles were limited to ±15 degrees to prevent unrealistic 
patient positioning that could introduce artefacts not representative of actual clinical scenarios. 
Zoom transformations simulate variations in patient distance from imaging equipment, while 
horizontal flipping accounts for potential differences in patient positioning across different clinical 
settings. 
 
2.5.3 Implementation strategy 
 

Augmentation techniques were applied dynamically during training to maximise dataset diversity 
while maintaining computational efficiency. Real-time augmentation ensures that the model 
encounters varied presentations of each training sample throughout the training process, improving 
generalisation capabilities without requiring additional storage space for pre-augmented images. 
This approach is particularly valuable in resource-constrained environments where storage 
limitations may restrict dataset expansion options. 
 
2.6 Model Architecture 
2.6.1 DenseNet-121 architecture 
 

DenseNet-121 serves as the foundation CNN architecture, providing 121 layers with dense 
connectivity patterns that facilitate efficient feature reuse and gradient flow [14]. The architecture's 
dense connections enable effective feature propagation while maintaining relatively modest 
computational requirements compared to deeper alternatives. This balance makes DenseNet-121 
particularly suitable for deployment in resource-constrained environments where computational 
efficiency is paramount. 
 
2.6.2 Transfer learning implementation 
 

The model employs transfer learning from ImageNet pre-trained weights, leveraging learned 
features from natural image recognition tasks that translate effectively to medical imaging 
applications. This approach significantly reduces training time and data requirements while 
improving convergence stability. The pre-trained features provide a strong foundation for 
pneumonia-specific feature learning, particularly valuable when working with limited medical 
imaging datasets. 
 
2.6.3 Custom classification layers 
 

The DenseNet-121 backbone is augmented with custom classification layers designed explicity 
for binary pneumonia detection. The classification head consists of global average pooling followed 
by fully connected layers with dropout regularisation to prevent overfitting. The final layer employs 
sigmoid activation for binary classification, producing probability scores for pneumonia presence that 
clinical practitioners can easily interpret. 
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2.6.4 Model optimisation for resource constraints 
 

Architecture modifications were implemented to optimise the model for deployment in resource-
limited environments, specifically targeting a minimal footprint and rapid inference. These 
optimisations included strategic layer pruning, quantisation considerations, and general memory 
usage minimisation, all while striving to maintain diagnostic performance. While standard DenseNet-
121 implementations typically range from 30.5 MB to 34 MB in size, our rigorous optimisation 
process culminated in a final model with a highly compact file size of 26.85 MB. Performance 
benchmarking on a GPU environment (e.g., Google Colab) demonstrated an average inference time 
of 16.117 ms per image, significantly faster than many larger or less optimised CNNs. These metrics 
collectively confirm the model's high computational efficiency and its suitability for real-time edge 
device deployment and offline diagnostic applications where computational resources are severely 
constrained. 

 
2.7 Training Optimisation 
 

Comprehensive training optimisation strategies were implemented to ensure stable 
convergence, prevent overfitting, and achieve optimal diagnostic performance within the constraints 
of our dataset size and computational resources. 
 
2.7.1 Learning rate strategy 
 

An adaptive learning rate reduction strategy was employed, beginning with an initial learning rate 
of 0.001 and implementing automatic reduction when validation loss plateaus. The learning rate is 
reduced by a factor of 0.5 when validation loss fails to improve for five consecutive epochs, enabling 
fine-grained optimisation as training progresses. This adaptive approach ensures efficient 
convergence while preventing overshooting of optimal parameter values during later training phases. 
 
2.7.2 Early stopping mechanism 
 

Early stopping was implemented with a patience of 10 epochs based on validation loss monitoring 
to prevent overfitting and reduce unnecessary computational overhead. The early stopping 
mechanism preserves the model state with the lowest validation loss, ensuring optimal 
generalisation performance on unseen data. This approach is particularly crucial when working with 
limited datasets where overfitting risks are elevated. 
 
2.7.3 Model checkpointing 
 

Comprehensive model checkpointing saves the best-performing model weights based on 
validation accuracy throughout the training process. This strategy ensures preservation of optimal 
model parameters even if training continues beyond the point of peak performance. Checkpointing 
also enables recovery from training interruptions and facilitates systematic comparison of model 
performance across training epochs. 
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2.7.4 Regularisation techniques 
 

Multiple regularisation techniques were employed to enhance model generalization capabilities, 
including dropout layers with 0.5 probability in the classification head and L2 weight regularization 
with λ = 0.0001. These techniques help prevent overfitting while maintaining model capacity for 
learning complex diagnostic patterns. The regularisation parameters were selected through 
systematic experimentation to achieve an optimal bias-variance tradeoff. 
 
2.7.5 Training environment and resources 
 

Model training was conducted using standard deep learning frameworks optimised for medical 
imaging applications. Training time and computational resource utilization were carefully monitored 
to establish benchmarks for deployment feasibility assessment. This information provides valuable 
insights for practitioners considering similar implementations in resource-constrained environments. 
  
2.8 Performance Evaluation 
 

Comprehensive performance evaluation employs multiple complementary metrics to provide a 
thorough assessment of diagnostic accuracy, clinical utility, and deployment readiness. The 
evaluation strategy addresses both technical performance and clinical relevance considerations. 
 
2.8.1 Primary performance metrics 
 

Model performance is assessed using five primary metrics essential for medical diagnostic 
applications:  

 
i. accuracy for overall diagnostic correctness,  

ii. precision to quantify true positive reliability,  
iii. recall to measure sensitivity in detecting pneumonia cases,  
iv. F1-score for balanced precision-recall assessment, and  
v. Area Under the ROC Curve (AUC) for threshold-independent performance evaluation.  

 
These metrics provide comprehensive insight into model behaviour across different clinical 

scenarios and decision thresholds. 
 

2.8.2 Confusion matrix analysis 
 

Detailed confusion matrix analysis provides insight into specific classification patterns, including 
true positive, true negative, false positive, and false negative distributions. This analysis is crucial for 
understanding model limitations and identifying potential areas for improvement. Confusion 
matrices enable clinical practitioners to understand model behaviour patterns and make informed 
decisions about deployment and integration into clinical workflows. 
 
2.8.3 Statistical significance assessment 
 

Performance metrics include confidence intervals and statistical significance testing to ensure 
reliable performance assessment despite the relatively small test set size. Bootstrap sampling 
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techniques provide robust estimates of metric variability and enable meaningful comparison with 
benchmark performance levels. This statistical rigour is essential for clinical validation and regulatory 
approval processes. 
 
2.8.4 Clinical relevance evaluation 
 

Beyond technical performance metrics, evaluation includes assessment of clinical relevance 
factors such as diagnostic confidence levels, decision threshold optimisation, and implications for 
patient care of false positive and negative rates. This clinical perspective ensures that technical 
performance translates into meaningful diagnostic utility in real-world healthcare settings. 
 
3. Results  
3.1 Classification Performance 
 

The developed binary classification model, engineered for resource efficiency with a compact size 
of 27 MB, achieved an overall validation accuracy of 66.36% on the test dataset. The model 
demonstrated an area under the receiver operating characteristic curve (AUC) of 0.7310 and an F1-
score of 0.6207, indicating moderate discriminative performance for pneumonia detection. 

 

 
Fig. 4. Overall performance metrics (Accuracy, AUC, and F1-score) of the 
pneumonia detection model 
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Fig. 5. Receiver Operating Characteristic (ROC) curve for the pneumonia 
detection model, with an AUC of 0.7310 

 
3.2 Performance Across Radiographic Projections 
 

The model's performance remained consistent across different radiographic views, with 
comparable results observed for both posteroanterior (PA) and anteroposterior (AP) chest X-ray 
projections. Evaluation on lateral view projections is currently pending and will be reported in 
subsequent analyses. 

 

 
Fig. 6. Performance metrics (Accuracy, F1-Score, and AUC) across different 
radiographic projections (PA and AP). Lateral view evaluation is pending 
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3.3 Performance Analysis 
 

The AUC of 0.7310 suggests that the model possesses reasonable discriminative ability, 
performing substantially better than random classification (AUC = 0.5). The F1-score of 0.6207 
indicates a balanced performance between precision and recall, suggesting that the model achieves 
a reasonable trade-off between sensitivity and specificity in pneumonia detection. 

The consistent performance across PA and AP projections demonstrates the model's robustness 
to variations in standard chest X-ray acquisition protocols, which is clinically relevant for practical 
deployment in diverse healthcare settings. 
 

 
Fig. 7. Confusion Matrix of the pneumonia detection model, showing True Negatives, False 
Positives, False Negatives, and True Positives. The matrix also provides sensitivity (recall), 
specificity, precision, and overall accuracy. 

 
3.4 Computational Efficiency 
 

Beyond diagnostic performance, the model's computational efficiency was a primary focus of this 
study, aiming for practical deployability in resource-constrained settings. 

The optimised DenseNet-121 model achieved a highly compact file size of 26.85 MB. This 
represents a notable reduction compared to typical DenseNet-121 implementations, which often 
range from 30.5 MB to 34 MB in size, as well as other common deep learning architectures [15]. 

Benchmarking on a GPU environment (specifically, a Google Colab instance with GPU 
acceleration) revealed an average inference time of 16.117 ms per image. This rapid processing speed 
enables near real-time diagnostic capabilities, crucial for clinical workflows. For comparison, many 
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larger or less optimised convolutional neural networks can have inference times upwards of 30 ms 
or more for similar tasks [16]. 

These computational metrics collectively highlight the model's efficiency, making it a viable 
solution for deployment in environments where computational power and memory are critical 
considerations. 

 

 
Fig. 8. Overview of optimised model's computational performance metrics, including model size and 
average inference time, with comparisons to standard benchmarks 

 
4. Conclusions 
 

This study successfully established and documented a novel seven-step systematic development 
framework for lightweight convolutional neural network-based pneumonia detection systems, 
prioritising deployment feasibility and clinical transparency in resource-constrained environments. 
The developed model, utilising a DenseNet-121 backbone trained on 2,000 curated MIMIC-CXR 
images, achieved an overall validation accuracy of 66.36%, an AUC of 0.7310, and an F1-score of 
0.6207 on the test dataset. 

These results demonstrate the model's moderate discriminative ability for pneumonia detection, 
performing substantially better than random classification. Furthermore, the model exhibited robust 
and consistent performance across posteroanterior (PA) and anteroposterior (AP) chest X-ray 
projections, achieving an AUC of 73.2 and F1-score of 62.3 for PA views, and an AUC of 73.0 and F1-
score of 61.8 for AP views. This highlights its crucial robustness to variations in standard acquisition 
protocols, essential for diverse healthcare settings. The computational efficiency of the optimised 
model is a key strength, with a compact file size of 26.85 MB and an average inference time of 16.117 
ms per image on a GPU, making it highly suitable for rapid, real-time diagnostic applications on edge 
devices. 

While early-stage, this work showcases the unique potential of lightweight, projection-tolerant, 
and highly efficient CNNs for offline diagnosis pipelines, thereby contributing to increased confidence 
in machine learning applications among healthcare professionals and advancing the practical 
deployment of pneumonia detection systems in resource-limited environments. 

Despite these promising results, this study has certain limitations that delineate avenues for 
future research. The model was trained on a curated subset of 2,000 images from the MIMIC-CXR 
dataset; expanding the dataset to include multi-centre data is crucial for enhancing generalisation 
and robustness across varied clinical contexts. While efficiency metrics are strong, direct validation 
on diverse edge computing devices is essential to quantify real-world deployability and energy 
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consumption fully. Future efforts will also focus on deeper interpretability methods, such as 
comprehensive visual explanations (e.g., detailed Grad-CAM analyses on diverse cases), to further 
enhance clinician trust and facilitate error analysis. Finally, integrating this model into a complete 
diagnostic pipeline, encompassing raw DICOM image pre-processing, user interface design for clinical 
interaction, and robust post-processing steps, will be investigated to provide more actionable insights 
for healthcare professionals. 
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