Convolutional Neural Networks for Pneumonia Detection: A Preliminary Investigation and Development Framework

Authors

  • Muhammad Faiz Anuar Kolej PERMATA Insan, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
  • Siti Munirah Mohd Kolej PERMATA Insan, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
  • Nurhidaya Mohamad Jan Education & Advanced Sustainability Research Unit, Kolej PERMATA Insan, Universiti Sains Islam Malaysia Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
  • Anucha Watcharapasorn Center of Excellence in Materials Science and Technology, Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

DOI:

https://doi.org/10.37934/cjcst.2.1.115

Keywords:

Pneumonia, convolutional neural network, machine learning, chest x-ray

Abstract

Pneumonia remains the leading infectious cause of death globally, particularly in low-resource settings where delayed diagnosis and limited radiologist availability exacerbate mortality. Existing AI-based radiograph interpretation systems often demand high computational resources and lack robustness across imaging projections. This study presents a proof-of-concept convolutional neural network diagnostic tool optimised for projection-invariant pneumonia detection under constrained conditions. Using a DenseNet-121 backbone trained on 2,000 curated images from the MIMIC-CXR dataset, our model achieved an AUC of 0.7310 and F1-score of 0.6207, with 66.36% validation accuracy. The model’s performance was consistent across posteroanterior and anteroposterior projections, though lateral view evaluation is pending. Preprocessing included CLAHE and DICOM standardisation, while augmentation improved generalisation. Though early-stage, this work shows the potential of lightweight, projection-tolerant CNNs in offline diagnosis pipelines. Future work will validate deployment feasibility on edge devices and expand evaluation across diverse patient demographics.

Author Biographies

Muhammad Faiz Anuar , Kolej PERMATA Insan, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

faizanuar09@gmail.com

Siti Munirah Mohd, Kolej PERMATA Insan, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

smunirahm@usim.edu.my

Nurhidaya Mohamad Jan, Education & Advanced Sustainability Research Unit, Kolej PERMATA Insan, Universiti Sains Islam Malaysia Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia

nurhidaya.mj@usim.edu.my

Anucha Watcharapasorn, Center of Excellence in Materials Science and Technology, Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

anucha@stanfordalumni.org

Downloads

Published

2025-08-25

How to Cite

Anuar , M. F., Mohd, S. M., Mohamad Jan, N., & Watcharapasorn, A. (2025). Convolutional Neural Networks for Pneumonia Detection: A Preliminary Investigation and Development Framework. Citra Journal of Computer Science and Technology , 2(1), 1–15. https://doi.org/10.37934/cjcst.2.1.115

Issue

Section

Articles